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The implicit continuous Eulerian (ICE) finite difference method in hydrodynamic com- 
putations has proven very successful when applied to flow situations in which there are 
excessive fluid distortions. Code logic becomes exceedingly complex, however, if the boun- 
daries of the fluid domain are material interfaces whose orientations with respect to the 
Eulerian grid evolve during the calculation. It is shown in this article that within the ICE 
methodology it is possible to express the discrete mass conservation condition in an identical 
form for all computational cells, even those containing, or close to, moving fluid boundaries. 
From this basis a generalised ICE algorithm is built up alleviating many of the dilliulties 
associated with complicated configurations of free and structure boundaries. In particular, an 
etrective treatment of slug impact with fluid-structure interaction is readily formulated. To 
illustrate the technique in practical situations, the method has been incorporated into a 
version of the coupled fluid-structure code SEURBNUK-EURDYN, used for LMFBR safety 
analysis, and a number of fluid-gas, fluid-structure situations are analysed. Results are com- 
pared with analytic solutions, experimental measurement, and/or other code predictions, as 
appropriate. Two oblique, slug impact situations are included. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The numerical solution of the continuum equations of fluid and structure 
mechanics is preceded by a space discretisation to form a network of computational 
meshes covering the continuum domain. The discretisation may be Lagrangian, 
Eulerian, or arbitrary-Lagrangian-Eulerian (ALE) [ 1, 21, the order of the schemes 
following broadly the chronology of their development. 

The Lagrangian system is conceptually the simplest since the computational grid 
is attached to the continuum and hence moves with the material. As a consequence 
mesh cells will always contain the same material particles, while material interfaces 
and boundaries, defined along mesh lines, stay on the mesh lines, remaining sharp 
and easily tracked. As there is no flux of material across the cell edges, the 
numerical treatment of the conservation properties within the cell is relatively 
straightforward, accurate, and reliable. Structural analysis programs employ 
Lagrangian formulations for these reasons [3]. 

384 
0021-9991/88 $3.00 
Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



MOVING INTERFACES IN ICE HYDRODYNAMICS 385 

Problems can occur with the use of Lagrangian techniques in fluid dynamics 
applications where the fluid undergoes large motions and extensive shearing. Fluids 
are characterised by their lack of shear strength and any strong differential motion 
on the scale of the space discretisation will produce severe distortion of the 
Lagangian mesh. In extreme cases meshlines can cross one another producing 
regions of negative volume; spurious energy generation and instability usually 
ensue. Problems can also occur in regions where one would physically expect boun- 
dary layer separation effects, for example near sharp corners, where free shear 
layers and reverse flow phenomena can lead to rapid mesh deterioration. 

These situations are better handled using Eulerian schemes in which the com- 
putational grid remains fixed in space. There are then no problems with mesh 
tangling, though as the fluid moves from one cell to another the flux terms at the 
cell edges need to be computed. Since the discrete flux quantities will only be 
approximations to the differential expressions, strict conservation of (particularly) 
mass cannot be enforced. This renders the Eulerian approach less suitable for struc- 
ture mechanics applications. In the fluid mechanics context however, Eulerian 
methods are very versatile though somewhat more dispersive than their Lagrangian 
counterparts due to diffusion effects introduced in the handling of the flux terms. 
The principal disadvantage of the Eulerian approach is in the treatment of moving 
material interfaces and boundaries. These are Lagrangian surfaces and even if 
initially they are aligned with the Eulerian mesh lines they will not remain so, but 
move with the fluid through the mesh structure forming irregularly shaped fluid 
cells. Complex logic procedures are required to identify and handle the various 
configurations which can arise. 

Arbitrary-Lagrangian-Eulerian (ALE) techniques have emerged in an attempt to 
preserve the simplicity of the Lagrangian approach near moving interfaces and 
boundaries, but to retain the Eulerian option within fluid regions where large 
differential velocities would otherwise lead to mesh tangling. For these schemes the 
numerical algorithms are assembled in a general way with the motion of the com- 
putational mesh left unspecified. The ALE formulation incorporates the Lagrangian 
and Eulerian approaches as limiting cases in which the mesh is chosen to move 
with the fluid or remain fixed in space, respectively, but any intermediate option is 
also available. By judicious choice of the mesh description it is often possible to 
take advantage of the relative merits of both the Lagrangian and Eulerian 
approaches. For example, the use of a purely Lagrangian mesh specification at a 
free surface (fluid-gas interface) would be advantageous in most circumstances. At 
a fluid-structure boundary a natural choice for the inviscid case would be to align 
the fluid mesh points with the structure nodes to maintain fluid-structure contact 
but allow the fluid to move across the mesh lines in the tangential direction in 
accordance with the free slip boundary condition [4, 51. Stated loosely, this mesh 
description would locally be Lagrangian normal to the structure but Eulerian 
tangentially. 

However, if the free and structure surfaces intersect, as in the case of a partially 
filled tank, Fig. 1, it will not be possible to retain a purely Lagrangian description 
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FIG. 1. Intersection of free and structure boundaries in a partially tilled tank 

for both surfaces near the point of contact, 163. The breaking of waves and oblique 
slug impact are phenomena presenting similar difficulties and the logic to deal with 
them may then be as intricate as in the case of pure Eulerian formulations. 

The comments apply equally to finite difference and finite element schemes; 
indeed the distinction in some cases may be one of semantics only, [7, 81. Finite 
elements are used in structure mechanics applications to good effect since they 
facilitate the coupling of different element types in geometrically complex situations. 
The advantages are not so apparent in fluid mechanics modelling, but L, E, and 
ALE techniques are firmly established for both the finite difference and finite 
element approaches. 

In this paper we concentrate on Eulerian formulations and propose a sim- 
plification of the numerical treatment of partially filled cells containing moving 
material interfaces. The development of successful Eulerian finite difference schemes 
has been influenced considerably by the work performed over the years at Los 
Alamos Scientific Laboratory (LASL) by Harlow and his collaborators, [9]. The 
staggered mesh system introduced with the MAC (marker and cell) method 
[ 10, 111 is shown in Fig. 2. The scalar pressure is defined at the cell centres, and 
momenta and velocities at the mid-face positions, as shown. This arrangement 
enables the spatial derivatives to be evaluated by central differences over a single 
mesh spacing. A forward time differencing is adopted and the method is charac- 
terised by the use of massless marker particles, typically 4 or 5 per cell, distributed 
throughout the fluid regime and moving with the advection field. By following the 
motion of the marker particles the time-dependent streamlines can be built up, and, 
in particular, movement of the fluid boundaries traced. 

The staggered mesh structure of Fig. 2 is retained for the ICE (implicit con- 
tinuous Eulerian) method [ 123 developed from MAC but including compressibility 
effects. Further scalar field quantities-energy, density-are needed and these, like 
the pressure, are defined at cell centres. The ICE finite difference equations and 
their solution for internal fluid cells is summarised briefly in the next section of 
the paper. In Section 3 a general discrete expression for the mass conservation 
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r- ? ,+ 

FIG. 2. MAC/ICE cell structure: (a) staggered mesh system; (b) momentum control volumes. 

condition is derived for all fluid cells, even those containing or close to moving 
Lagrangian boundaries. Section 4 considers momentum conservation in boundary 
cells. A different procedure is required for free surfaces (pressure continuity) than 
for structure surfaces (velocity continuity), but the treatment is complementary 
allowing both types of surfaces to be present in a single computational cell. 

Although the physical principles underlying the approach are quite general, 
specific application will require a reference point, and details of the implementation 
of the method in an Eulerian fluid-structure code are also given in Section 4. The 
code SEURBNUK-EURDYN [13], couples the finite-difference hydrodynamics 
module SEURBNUK [1416], based on ICE, with the finite element structures 
code EURDYN [17-191, developed at JRC Ispra. A number of transient fluid 
calculations in various geometries are described and results compared with analytic 
solutions or experimental measurement, as available. 

A formulation to deal with slug impact phenomena, including fluid structure 
interation effects, is developed in Section 5 and tested against experimental data. 
Finally, a short summary of the work is given in Section 6. 

2. INTERNAL FLUID CELLS 

The numerical procedures adopted by ICE for internal fluid cells are well 
described elsewhere [12, 14,201, but for reference the salient features are 
reproduced below. Where there are variations in the approach, for example in the 
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choice of independent variables or the handling of the advection terms, those 
implemented in the SEURBNUK code [ 141 will be used; this for convenience later. 

The 2D conservation equations of mass, momentum, and energy are, neglecting 
viscosity, 

(4) 

where p, u, u, p, E, g refer respectively to the density, component velocities, 
pressure, total energy/unit mass, and gravitational acceleration. The equations are 
written in general coordinates with s = 1 corresponding to Cartesian and s = x for 
cylindrical polar. 

The equations are closed by the constitutive equation of state for the material 

where 

P = P(PY Z), (5) 

Z=E-;(u2+u2) (6) 

is the internal energy per unit mass. 
A novel feature of the ICE approach is the treatment of the equation of state, (5). 

Written first in differential form, 

it is assumed that the first term predominates, so that approximately 

dpldp = c2, (8) 

where, for a fluid of constant specific heat, c is the isothermal sound speed. The 
approximation is a very good one for a compressible liquid (except under extreme 
conditions), where the pressure variations are due principally to the density 
changes, there being only weak dependence on internal energy. The finite difference 
analog of (8) is generally referred to as the ICE equation and its adoption suc- 
cessfully decouples the energy equation (4) from the other conservation conditions, 
simplifying the solution procedure considerably. 
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SEURBNUK operates in cylindrical geometry with radial and axial coordinates 
denoted by (u, z) and with s = r. The independent variables are density p, momenta 
pu, pu and total energy/unit volume (pE), preserving the conservation form of the 
equations during discretisation. The disposition of the dependent quantities with 
respect to the Eulerian grid is as shown in Fig. 2. Time and space derivatives are 
approximated by first-order advanced and central differences, respectively. 

At the beginning of the time step the solution is known everywhere. To find the 
advanced time quantities finite difference expressions for the conservation con- 
ditions are used. The control volume for the mass equation is the basic Eulerian 
cell, and, relating the mass change within the cell with the fluxes across the cell 
faces, we derive the difference form of (l), with the terminology introduced in 
Fig. 2, as 

in which 

‘.& Lz- 
F Ar” 

~,=LL 
F A? k,=-j-p 

and the asterisk * refers to beginning of cycle values. Note the use of updated, end 
of cycle, momenta in (9). 

The control volumes for the momenta are offset from the basic mesh, as indicated 
for radial component (PU)~ and the axial component (PU)~ in Fig. 2. The difference 
equations derived from (2), (3) take the form 

(PI3 - (P): P - P3 

At 
=7+<:, 

(P)4 - WLT P - P4 

At =7+)I:7 

where 

<* = (vu’): - (vu’): + (WE - (WE 
3 r+ Ar AZ ’ (13) 

4* = (vu)l* - (vu)? + (pu2)2* - (PU’)! 
4 FAr AZ ’ (14) 

represent the non-linear advection terms. The subscripts refer to the appropriate 
faces of the respective momentum control volumes shown in Fig. 2; linear averaging 
of the grid values is used where necessary. The asterisk * signifies that in 
SEURBNUK the advection quantities are treated explicitly, using start of cycle 
values, and so become source terms for the momentum equations (1 l), (12). Similar 
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expressions pertain to the other grid momenta (PU)~, (pu)*. Combining (9), (ll), 
(12) with the finite difference analog of (8), 

(P-P*)=c**(P-P*), (15) 

leads to an implicit equation for the pressure field of the Poisson type: 

P=A,P,+A~P~+A~P~+A~P~+R*, (16) 

where the source term R* is evaluated in terms of known quantities, and 

(a,,A,,A,,A,)=~(A,,A,,A,,A,), with D=$+ (17) 

The matrix derived from the implicit pressure equation (16) has band width 5. 
For a square mesh, Ar = AZ, and a Courant related time step, say 

we find 

A,+A,+A,+A,=t 

so that the pressure matrix is diagonally dominant. Gauss-Seidel iteration is then a 
very effective matrix inversion procedure usually requiring only 3 or 4 iterations for 
convergence to tolerable accuracy. If the fluid is considered incompressible, c + co, 
or too large a time step is adopted: 

Al+A2+A,+A,+1, 

and the lack of diagonal dominance impedes the rate of convergence of the iteration 
considerably. In SEURBNUK successive point over-relaxation and/or Aitken 
extrapolation may be used to accelerate convergence for these cases. 

With the pressure field determined, back substitution in Eqs. (1 l), (12), (15) 
enable the end of cycle momenta and densities to be evaluated. With these quan- 
tities known, a finite difference form of the energy equation (4), can be used to 
update the total energy variable E. Finally, the internal energy I may be evaluated 
from (6) and used via the equation of state (5), to check the adequacy of the ICE 
approximation (8), and evaluate the sound speed c ready for the next time step. The 
cycle is then complete. 

3. THE GENERAL Miss EQUATION FOR BOUNDARY CELLS 

The solution algorithm outlined in the last section requires modification for those 
cells containing, or close to, moving Lagrangian boundaries. Not only will boun- 
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dary conditions need to be enforced, a pressure (or stress) condition at free surfaces 
and a velocity condition at structural surfaces, but some of the quantities required 
by the finite difference equations could fall outside the fluid regime. As mentioned 
previously, to take account of all the topological configurations which may occur at 
or near fluid boundaries requires very complex code logic. 

In this section we derive a general expression for the mass balance in a partially 
filled Eulerian cell containing a moving boundary. A typical cell is shown in Fig. 3 
where the fluid content of cell has been shaded. The fluid is bounded on three sides 
by portions of the Eulerian grid and on the fourth by the Lagrangian surface AB 
with, in this particular case, the grid momentum (p~)~ lying wholly outside the fluid 
domain. For consistency, we work in (r, z) coordinates, the modifications to the 
treatment for the Cartesian case are trivial. 

13 

FIG. 3. A partially tilled boundary cell: (a) general layout; (b) partial areas; (c) partial volumes. 
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With the notation given in Fig. 3 we apply mass continuity arguments to the fluid 
content of the cell. This gives 

I’= 27~ AZ@), + n(r;- r? )(PU)Z 

- (pU)dS-n(r2,-r2)(pu),, 
s (18) 

where V is the fluid volume within the cell, pU is the outward momentum at a 
general point on the Lagrangian surface, and dS the incremental surface area. The 
grid momenta in (18) should be considered averaged values for the appropriate flux 
areas. 

We assume that locally within the cell: 

(rpu) is a linear function of r radially, constant axially; (19) 

(pv) is a linear function of z axially, constant radially. (20) 

The assumptions are reasonable since (PU)~, (pu), already represent vertically 
averaged quantities, so the assumed zero-order dependence in the z direction is 
appropriate. The r factor is included for the radial variation to give exact represen- 
tation for a constant line source along the axis of symmetry. Analogous arguments 
apply for the vertical momenta (PO)*, (PU)~. 

Under the assumptions (19), (20) the components of the normal mass flux at the 
general point C(r, z) on the Lagrangian boundary AZ3 will be given by 

r(pU),=(~)r~(pu),+(~)r,(pu),, 

(P,,=(y) (,4+(y) (PU)4, (22) 

from which we can evaluate the mass flux across the boundary. We adopt 
parametric equations for the curve AB in the (r, z) plane in terms of the arc length 1 
as 

r = r(f), z = z(l), O<I<L 

in which L is the total length of the arc. We then have 

(23) 

To facilitate evaluation of the line integrals in (23), it proves useful to define 
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partial volumes and partial areas for the cell, as indicated in Figs. 3b, c. It is easy to 
verify that 

c,= “L(r-rp)$di, s c,= L(r+ 5 0 
-r)$dl, 

72 = I L2xr(z-ip)$dl, zq = 
0 I 

L 

27cr(z + 
0 

-z)$dl. 

(24) 

For the configuration shown in Fig. 3, ,Z, corresponds to the fluid content of the 
cell, and 

V= 2m,Z;,, (26) 

where rG is the radius to the centroid of area Z,. 
Returning to the expression for the mass flux Q,- given in (23), we substitute for 

the momentum components according to the relations (21), (22) and evaluate the 
line integrals in terms of the partial areas and volumes defined in (24), (25). This 
gives 

(27) 

and represents a general expression for the mass flux across a boundary surface in 
terms of the grid momenta. 

Equation (27) enables us to express mass continuity for the cell, (18), entirely in 
terms of the grid momenta. Using (26), this gives 

where A,, AZ, a,, a4 are defined in (10). 
The mass balance condition (28), though derived here for the specific boundary 

configuration in Fig. 3, may be shown to be quite general, applicable to all cells 
overlapping the fluid domain. If the cell is completely filled with fluid, rG = ?, and 
we recover the standard mass continuity equation for internal cells, (9). Partially 
filled cells may contain any orientation of free and structure boundaries. Some of 
the possibilities which arise in LMFBR containment analysis are sketched in Fig. 4. 

The use of a general mass balance equation enables us to extend the ICE 
algorithm described in the previous section to partially filled cells at or near the 
boundary of the fluid domain. The momentum equations ( 1 1 ), (12) will need to be 
suitably adapted, and here the treatment will depend on the type and orientation of 
the bounding surfaces. The procedures are described in the next section. 

581/77/2-8 
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FIG. 5. Axial momentum in a free-surface boundary cell: (a) control volume; (b) equivalent full 
volume. 

control volume ABCD, shaded in the figure. The average pressure on the lower face 
DC of the control volume, drawn through the centroid (ro, zo) is p, the cell 
pressure, while on the upper sloping surface AB the pressure is pG, the local gas 
pressure. An axial force balance condition for the momentum volume ABCD is then 
easily constructed. Per unit azimuthal angle this is 

((PV) -f)*) 
z’=fdr(p--p,)+r-(z,-z,)(puu):-r+(z,--z,)(puu)~ 

+ r Ar(pv2); - [j (pu)*U* . dS (29) 

in which z,,, zL are the axial coordinates of the intercepts A, B on the left and right 
edges of the cell. The flux terms refer, respectively, to the left face AD, the right face 
BC, the lower face DC and the curved upper face AB. We make similar 
assumptions to (19), (20) regarding the variation of the advection quantities within 
the cell. This gives, for a general point (r, z) on the Lagrangian surface AB 

r(w)=(y) (rpuu), +(+) (rpuu), 

/d=(y) (pu%+(yq (pu% (31) 
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in which z2, zq, shown in Fig. 5b, define the appropriate levels for the evaluation of 
the axial flux quantities; Eqs. (13), (14) for internal cells. 

Using (30), (31) we can determine the momentum flux across the curved boun- 
dary, just as we did for the mass fluxes in the last section, in terms of line integrals 
along the arc AB. This gives, in an obvious notation, 

=- jL r(puu)* f dl+ jL r(pu2)* f dl. (32) 
0 0 

Using the relations (30), (31), each of the line integrals in (32) can be evaluated 
in terms of the area Z’, and volume r’ of fluid in the momentum control volume 
ABCD. Collecting terms, the force balance condition (29) may be written 

(PU) - (Pu)* 
At =(i)(z) 

(WUP - (vu): 
rb Ar (33) 

in which rk is the centroid of the area L”, and Q, determined from 

Z’=ct,ArAz 

is the fractional average height of the fluid surface AB above the plane DC through 
the centroid. The factor f/r; appears because in cylindrical geometry the centre of 
pressure for the external forces, at radius ?, does not coincide with “centre of 
momentum” at radius rb. In Cartesian geometry the centres are coincident and the 
factor is unity. 

We can recast (33) in a form more closely aligned with the axial momentum 
equation for an internal cell, (12), by linearly extending the pressure field to the 
neighbouring cell (cf. Fig. 5b) according to 

(34) 

We can then write 

(P)4 - (PUE 
At =(;)(y)+v: 

with 

(35) 

(36) 
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as the source term. The equation is applied to the full momentum control volume 
drawn in Fig. 5b, is very similar in form to the standard axial momentum equation 
(12), which it replaces for surface cells whose upper edge face is a Lagrangian free 
boundary. The standard momentum equations (11). ( 12) are used for the remaining 
three non-Lagrangian faces of the cell. 

For other free surface orientations analogous expressions to (35) may be derived. 
In particular, for the configuration shows in Fig. 6a, the appropriate momentum 
equation would be 

in which F (= ?+ +CI~ Ar) is the mean radius of the control volume ABCD, 

and the source term <: is given by 

C B 

(38) 

(39) 

FIG. 6. Radial momentum in a free-surface boundary cell: (a) control volume; (b) equivalent full 
volume. 



398 B. L. SMITH 

The subscripts in (39) refer to the faces of the full radial momentum cell shown in 
Fig. 6b. 

We thus arrive at a strategy for extending the ICE algorithm, formulated for 
internal fluid cells in Section 2, to cells containing free surface boundaries: 

The cell is considered completely full of fluid but a slightly modified mass 
continuity condition (28) is applied. The equation contains a geometry factor 
(T/rG), which depends on the actual disposition of fluid within the cell. For the 
momentum conservation conditions, the standard momentum equations (1 1 ), (12) 
are used for internal cell faces but a slightly modified equation, (35) or (37), is 
applied for the Lagrangian boundary faces. Otherwise the momentum control 
volume is assumed full of fluid, though care is needed in evaluating the advection 
terms, the fluid velocity and momentum fields being suitably extended into the gas 
region as appropriate. Combining the equations leads to an implicit Poisson 
equation for the pressure similar to (16) but with slightly modified coefficients. The 
equation is solved along with those for internal cells so that the pressure field is 
derived from consistent application of pressure equation (16) throughout the fluid 
regime, with the pressure boundary condition at free surfaces incorporated directly 
into the solution procedure via the modified momentum conservation conditions 
(35) (37). This avoids the use of pressure interpolation formulae adopted for the 
standard version of the SEURBNUK code [14] and by other codes based on the 
ICE algorithm [21, 22, 23,241. Further comments are made in Section 5. 

The equations derived have been implemented into a version of the 
SEURBNUK-EURDYN code and tested in axial, radial, and spherical geometries. 
The test geometry for the axial case, given in Fig. 7, comprises a shock tube 

END 

AXIS OF SYMMERY 

RIdID WALL 

- Colculoled 
8 @@ Analytic 

TIME (MSEC) 

FIG. 7. Free surface treatment: Test 1 (axial geometry). 
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arrangement with a slug of liquid separating high and low pressure gas regions. The 
liquid is considered incompressible for this test and appropriate linear equations of 
state chosen for the gas regions: 

P2=POL 
t0 

(40) 

with < the liquid slug displacement and to, p. constants, in order to produce simple 
harmonic motions. The analytic solution for the displacement is easily derived as 

c$=gO(l -cosot), (41) 

where the angular frequency is given by 

with L the slug length and p. the liquid density. 
The displacement history of the slug calculated using the version of SEUBNUK 

with the extended ICE algorithm is given in Fig. 7 and compared with the analytic 
solution (41). The exact correspondence is somewhat fortuitous since the pressure 
variation through the slug is strictly linear in this case, consistent with the 
assumptions underlying the derivation of the numerical model. 

The second test, still one-dimensional, but in the radial direction, is seen in Fig. 8. 

RIGID PLATE 
/ 

, RIGID RING 

I \ 
I RIGID PLATE 

COURSE MESH FINE MESH 

J 

-180, I _ 180, 1 

w 
E 0, sl 

0 20 40 -60 0 20 60 
TIME (MSEC) TIME (MS&: 

FIG. 8. Free surface treatment: Test 2 (radial geometry). 
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An annulus of incompressible liquid is bounded internally and externally by gas 
regions maintained at uniform pressure. The inner (high pressure) gas region has 
equation of state 

where p. is constant and V, is the initial inner gas volume. In the outer (low 
pressure) gas region the pressure is constant (=p,/4). In this configuration the 
pressure variations are radially non-linear and accuracy will depend on the spatial 
mesh size used. The results of two calculations, showing the effect of mesh size 
variation, are given in Fig. 8 and compared to the analytic solution. The maximum 
displacement is well predicted in both calculations but a discernible improvement in 
the period of oscillation estimate is achieved using the liner mesh. 

A spherical expansion test is reported in the next subsection in connection with 
the fluid-structure interface treatment. 

4.2. Structure Boundaries 

At a fluid-structure interface a velocity boundary condition is imposed. In our 
case a free-slip condition is appropriate, so that at an impervious structure boun- 
dary we have continuity of normal velocity 

0, = v,z (43) 

in which u,, V, refer respectively to the fluid and structure normal velocities. 
Strictly, this relation should be imposed at every point on the boundary, but in 
practice it will be necessary to average the condition in accordance with the fluid 
and structure discretisations. 

Figure 9 shows a typical situation occurring in a structure boundary cell. The 
structure is described by a piecewise linear curve A BCDE drawn between successive 
structure nodes. The fluid, shaded in the figure, occupies that part of the cell 
volume to the left of the structure boundary leaving, in this case, the grid momen- 
tum (p~)~ indeterminate outside the fluid domain. 

Nonetheless, we may introduce a notional fluid momentum (pu); for this grid 
face which, among other reasons, will be useful for assembling the source terms, cf. 
equations (13), (14). The mass flux across the structure face is evidently 

in which U,, are the nodal normal velocities, p the cell density, and the (piecewise) 
integration is performed over the curved surface K, BCDK, of Fig. 9. The free-slip 
boundary condition, (43), may now be implicitly applied by equating the 
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blT~ d’ 
FIG. 9. Structure boundary cells (side type): (a) face 3; (b) face 4; (c) face I; (d) face 2. 

expression (44) with the mass flux Q, given in (27), already derived from a 
consideration of the fluid motions within the cell. Thus 

I 
K2 2lrc3 

WndS= Ar ---(P), +2n$fr+(pu)i-~hh -am. (45) 
Ki 

In addition to this relation the general mass balance condition (28) applies, 

AP 
4 dt= rG 0 

{am - &PU);) Ar+ {&~4, - &P)~) 4 (46) 

and we can eliminate the indeterminate momentum (pu); between them. This gives, 
with the terminology of Fig. 9, 

~~=2~r-(z,-z,)(pu),+a(r:-rrZ)(pu),-~KzpU~dS--(r~-r~)(pu),, (47) 
KI 
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which replaces the standard mass equation (28) for structure boundary cells of the 
type seen in the figure. Similar expressions may be derived for the other boundary 
orientations sketched in Fig. 9 by eliminating respectively the momenta @II)&, 
(pu);, (pa); between (45), (46). Notice that (47) is consistent with elementary con- 
siderations of mass balance in the cell, the terms on the right-hand side representing 
mass fluxes across appropriate boundary faces. 

Structure boundaries may also cut cells diagonally producing triangular shaped 
fluid regions, as illustrated in Fig. 10. Again, the boundary is a piecewise linear 
curve drawn between successive structure nodes ABCDE. The entry and exit points 
for the cell K,, K,, are shown, the fluid occupying the shaded region in the figure. 
The mass flux across the structure face, Q,, may be derived as before, (44), and 
equated to QJ from (27). Thus 

I 
KZ 27-a, 

pU, dS=dr r-(PU),+2n~r+(Pu);-~(Pv);-~(Pu),. (48) 
KI 

a 

A 

FIG. 10. Structure boundary cells (diagonal type): (a) faces 2, 3; (b) faces 3,4; (c) faces 1,4; 
(d) faces 1,2. 
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However, this time two notional grid momenta must be defined, (PO);, (pu);; and 
how can both be estimated using (28)? A further relation is surely needed. In fact, 
this is not true. By careful evaluation of the integrals for TV, C,, which have positive 
and negative contributions according to (24), (25), it transpires that the two 
momenta (pu);, (pu); disappear simultaneously between (46) (48) giving 

v~=2nr-(z,-;,)(pu),-I~zp~,dS-n(r:-r:)(pu),. 
KI 

(49) 

The relation is again consistent with basic mass continuity arguments for the cell 
(which explains the mathematical coincidence) and is seen to be a special case of 
(47) since rl = r- ; see Fig. 10. Similar expressions to (49) pertain for the other 
boundary orientations sketched in the figure. 

To summarise the extension of the ICE algorithm to cells containing structure 
boundaries: The free slip boundary condition, (43), is incorporated directly into the 
mass conservation equation for the cell which then contains no explicit reference to 
the cell momenta lying outside the fluid domain, (47), (49), but which may 
otherwise be treated as completely full of fluid. The standard momentum equations 
apply for the internal cell faces and control volumes according to Fig. 2, so that the 
conditions eventually appear as modifications to the implicit pressure equation 
(16). The equation is solved iteratively, along with similar equations pertaining to 
internal fluid cells (see Section 2) and free surface boundary cells (Section 4.1). The 
consistent use of the pressure equation for all fluid cells ensures that the motions of 
the fluid, the fluid surfaces, and the fluid-structure boundaries have the correct 
mutual interdependence. 

The boundary cell algorithms for structure cells have been implemented into the 
same version of the SEURBNUK-EURDYN code referenced in the last subsection. 
Simple test calculations have been performed in axial, radial, and spherical 1D 
situations. One of the axial tests is shown in Fig. 11 and comprises a similar shock 
tube arrangement used for Test 1 (Fig. 7) except that the liquid is separated into 
two volumes by a free-sliding plug. We follow the pressure wave propagation effects 
by modelling the plug as an elastic material and the liquid as a compressible fluid. 
The pressures on the front and back faces of the plug, shown in the figure, indicate 
that complex wave interactions occur as pressure waves propagate along the liquid 
columns. The pressure drop between the faces drives the plug motion and this, with 
due regard to finite propogation times within the compressible media, must match 
correctly the liquid column displacements. The plug displacement as a function of 
time, also given in Fig. 11, follows very closely the analytical solution based on 
solid body motion. 

The test in radial geometry is based on one of the sample problems from Phase 3 
of the APRICOT code comparison exercise, [25], and consists of an annulus of 
liquid bounded externally by a deforming ring in a state of plane strain, and inter- 
nally by a gas region, in our case maintained at constant pressure. The test 
geometry is given in Fig. 12. With the liquid treated as an incompressible fluid and 
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FIG. 11. Structure boundary treatment: Test 1 (axial geometry). 

the ring as an elastic material an analytic solution is readily derived. The ring dis- 
placement during the first cycle of the motion is compared in the figure with the 
SEURBNUK-EURDYN results. The period of the oscillation is well predicted and 
the maximum displacement is within 24% of the exact value. No discernible 
improvement is obtained by refining the mesh and/or the structural discretisations, 
so the solution as presented must be considered converged. The error in the 
maximum displacement is most likely due to limitations in the present thin shell 
model in EURDYN, which is based on small strain theory, through this suggestion 
is not pursued further here. 

The third 1D test is performed in spherical geometry, Fig. 13. A small high- 
pressure gas bubble is situated at the centre of an elastic spherical shell; liquid 
occupies the remaining volume. The equation of state for the gas bubble is adopted 
from the performance characteristics of the low density explosive (LDE) charge 
used for the COVA series of scale model tests, [2628]. The dimensions and 
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FIG. 12. Structure boundary treatment: Test 2 (radial geometry). 

material properties of the spherical shell are chosen to produce peak strains close to 
10% for a gas volume expansion of about 120, these values being representative of 
those measured for the COVA experiment WTO, [29]. The choice of parameters 
and the fact that an analytic solution may be constructed in this case enables an 
assessment of code performance to be made is flow conditions similar to those 
experienced during application. 

Snapshots of the test configuration during the SEUBNUK-EURDYN calculation 
are presented in Fig. 13. Sphericity is adequately maintained during the expansion 
phase (t = 0 to t = 1.2 ms) but Rayleigh-Taylor instabilities at the fluid-gas inter- 
face are manifested during the contraction phase and these ultimately lead to code 
failure at 1.9 ms. The displacement histories of the shell at points on the pole and 
equator, and a comparison with analytical results, are also given in the figure. 
There is strict sphericity up to 1.0 ms and the maximum displacement, which 
corresponds to a material strain in excess of lo%, is very well predicted. The 
bubble surface instabilities cause the displacements to diverge after 1.2 ms, and 
there is some under-estimation in the period of the oscillation. Otherwise, the 
results are considered satisfactory. 

The first of the 2D tests is a direct simulation of the COVA experiment ‘WTO 
itself. The test rig, shown in Fig. 14, comprises a thin (1.6 mm) cylindrical vessel 
56 cm high and 70 cm in diameter, securely clamped between two massive end 
plates. A 2 oz spherical LDE charge is placed on the axis of symmetry equidistant 
from the end plates and the vessel is completely tilled with water. Upon detonation 
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FIG. 13. Structure boundary treatment: Test 3 (spherical geometry): (a) initial geometry; (b) later 
configurations (times in ms); (c) displacement histories. 

of the charge the gaseous explosion products expand out into the water producing 
pressure loadings on the confinement and plastic yielding of the vessel. Of par- 
ticular interest are the impulse leads on the end plates and the vessel hoop strain 
history at charge height. 

The results of two SEURBNUK-EURDYN calculations are compared with 
measured values in Fig. 14. The first run uses the standard version of the code 
where pressures in the free surface boundary cells (i.e., those close to the charge 
bubble) are obtained by linear interpolation between the gas pressure at the surface 
and an interior cell value. The second run uses the extended ICE algorithm 
formulated in Section 4.1. The treatment at fluid-structure boundaries, described in 
this section, differs from the standard formulation in SEURBNUK-EURDYN, 
[30], principally in the ratios of the various radial factors L; rG, r, but for the 
present application in which the structural boundaries are many cell widths from 
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FIG. 14. A comparison of measured and calculated values for COVA test WTO: (a) test rig; (b) tank 
strain history at charge height; (c) end plate impulse history. 

the axis of symmetry, this effect should be small. Nonetheless, as Fig. 14 shows, the 
difference in hoop strain predictions is the most noticeable feature of the code com- 
parison. This, and the fact that both codes significantly underestimate the measured 
strains. The calculated strain rates are also too low (22 s- ’ against the measured 
value of 38 s-r) throughout the rise to peak strain. 

Impulse histories are also given in the figure. The error bars on the experimental 
values are included since there was some asymmetry between the roof and floor 
records, probably due to differences in the clamping arrangements for the two end 
plates. Despite these uncertainties the calculated final impulses are in good 
agreement with experiment, though the amplitude of the leading wave is 
underestimated. This may be linked to the under-estimate in rate of straining of the 
vessel, already mentioned. 
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The WTO experiment has recently been subjected to close scrutiny in the 
literature, [29, 311, in an attempt to find the cause of the consistent under-predic- 
tion in lower vessel hoop strains in the analysis of the COVA series experiments. 
Several possible explanations for the discrepancies have been advanced, and there 
have been some suspicions regarding code reliability for the experimental con- 
ditions encountered during the test. The spherical expansion problem described 
earlier in this section, chosen to reproduce the hydromechanical stress states obser- 
ved in the WTO test in a geometry amenable to exact analysis, appears to vindicate 
the code performance. 

Misrepresentation of the charge characteristics seems to be the most likely cause 
of the hoop strain underpredictions in WTO and other tests in the COVA series. 
This idea is pursued in a companion work, [32]. 

5. SLUG IMPACT PHENOMEMNA 

5.1. General 

The extended ICE algorithm developed for free and structure boundaries in the 
previous sections leads to a natural formulation for slug impact dynamics. For non- 
impact situations, but in which computational cells contain both free and structure 
boundaries, the formulae already derived may be applied. 

Two typical configurations are seen in Fig. 15. In the first example the two boun- 
daries are non-joining and the appropriate pressure equation is derived by double 
application of the formulae from Section 4.1 and 4.2: 

The general mass continuity condition (28) holds where, in this case, boundary 
faces 1 and 3 require special treatment. The cell is assumed full of fluid and, dealing 
first with the free boundary face 1, the momentum (pu), is derived according to the 
modified momentum equation analogous to (37). The structure boundary is 
handled exactly as described in Section 4.2: the mass flux QS from (45), which in 
essence expresses the free slip boundary condition (43), is used to eliminate (pu);, 
the notional grid momentum the other side of the structure boundary. As has been 
shown, this leads to a mass balance condition of the type (47), though with 
modified coefficients. 

Application of the appropriate momentum equations converts the mass flux 
terms in (47) to pressure drop (plus source) terms, and the density change Ap is 
written as a pressure change (p-p*) using (15). Collecting terms results in an 
implicit pressure equation of type (16), with A, = 0, which is solved along with 
those arising from the internal fluid cells. 

Once the pressure is known, back substitution yields the grid momenta (pu),, 
(PU)~, and (pu)+. The remaining momentum (pu);, required for evaluating the 
momentum source terms at the next time step, may then be estimated from (46). 

In the second example, Fig. 15b, the free and structure boundaries are joined. 
The mass continuity equation (28) is applied and the cell thereafter is considered 
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FIG. 15. Cells containing free and structure boundaries: (a) non-joining boundaries; (b) joined 
boundaries. 

full of fluid. The modified momentum equation (35) is required for the grid momen- 
tum (pu), across the free surface boundary and, as before, (pu); is eliminated from 
the mass equation (45). These conditions ultimately appear as modifications to the 
standard pressure equation (16) with, in particular, A3 = 0. 

Impact situations must be handled somewhat differently since it is necessary to 
explicitly recognise that the fluid component of velocity normal to the structure 
boundary is interrupted producing compression of the fluid and associated high 
pressures. On the other hand, if the fluid flow is essentially parallel to the structure 
we return to the benign contact situation seen in Fig. 15b. Figure 16 depicts a 
possible oblique impact progression of the type to be encountered in LMFBR con- 
tainment analysis. A postulated severe core accident produces an expanding bubble 

581/77;2-9 
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of hot gases which drives a domed slug of coolant upwards towards the roof cover. 
The damage potential of the high pressures following the impact of the slug, 
Fig. 15c, then requires evaluation. 

The Lagrangian and Eulerian numerical approaches have differing degrees of suc- 
cess in simulating the impact event. The fluid surface is by definition Lagrangian, 
moving with the fluid, and we have already commented upon the convenience of 
using the Lagrangian discretisation scheme for the adjoining fluid. Figure 17a 
suggests a typical Lagrangian mesh contiguration just prior to roof impact. The 
mass of each computational fluid cell is lumped at the corner nodes, usually 
equally, and this quantity is strictly preserved during the evolution of the flow. For 
the domed impact considered here node number 1 on the axis of symmetry is the 
first to strike the roof, followed successively by nodes 2 and 3, as indicated in 
Fig. 17b. 

The schematic in Fig. 17c highlights the main problem of impact modelling using 
the Lagrangian mesh description. A Lagrangian cell may be considered made up of 
four Newtonian point masses connected by light springs of strength determined 

NODES 

SYMMETRY FLUID 

IMPACTED NODE 

b I / ROOF 

C 

t 

FIG. 17. A Lagrangian description of oblique slug impact: (a) prior to impact; (b) during impact; 
(c) schematic of a Lagrangian cell; (d) typical impact pressure history. 
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from the compressibility of the liquid cell material. The continuous wetting of the 
roof surface during impact is replaced by a series of discrete nodal impacts, each 
accompanied by compression of the connecting springs, interpreted as cell 
pressurisation. The resulting pressure history at a point on the roof then appears as 
in Fig. 17d in which a distinct pressure spike accompanies the impact of each cell 
node. (In the example shown it has been assumed that progress of the impact zone 
radially is sufficiently subsonic to enable each cell time to re-expand before the next 
nodal impact). The number of pressure spikes reflects exactly the spatial dis- 
cretisation of the mesh, and in order to produce more realis I~ pressure profiles, cf. 
Fig. 16c, artificial damping or regularisation procedures nee 1 to be invoked [33]. 

With the Eulerian approach a continuous fluid descript 3n may be maintained 
within the cellular framework. In impact situations it is gen rally not only sufficient 
to know the volume fraction of fluid in an impact cell, bu also its location within 
the cell. In order to reproduce sharp pressure peaks of tF , type seen in Fig. 16c the 
fluid surface needs to be tracked very accurately and, ; 3 remarked earlier, this can 
cause some complex topology problems during codinr . 

In Fig. 18 the Eulerian interpretation of a domed i ,rpact situation is drawn. The 
fluid first hits the roof on the axis of symmetry, Fig. 18a, the contact point moving 
along the roof surface as the impact area grows. Fluid cells beneath the roof change 
status from non-impact to full-impact progressively as the contact point traverses 
the fixed edges of the Eulerian mesh. Four cell types are identified in Fig. 18b. The 
transition from non-impact to full-impact cell is seen to occur via a partial-impact 
cell, numbered 2 in the figure. If the change of cell status is made discontinuously, 
for example, the partial cell is treated as fully impacted or non-impacted according 
to whether Vl > V2 in Fig. 18c, the resulting pressure history may consist of a series 
of sharp peaks as shown in Fig. 18d, each peak signalling a change of cell status. 
Again, modelling difficulties are most severe when the contact point moves 
subsonically along the roof surface permitting the impacting cell to “rebound” 
before change of cell status in the adjoining cell leads to further compression. 

Characteristically, the pressure rise and decay is not as sharp as in the 
Lagrangian case, cf. Fig. 17d, since the conservation principles are not cell-wise 
enforced within the Eulerian scheme and fluid can diffuse across cell boundaries as 
a consequence of truncation errors in the numerics. The essential modelling 
deficiency remains however, that the number of pressure peaks matches the spatial 
discretisation rather than any underlying physical behaviour. 

Nonetheless, the Eulerian system, since it has the inherent ability to maintain 
continuous fluid behaviour, should offer the better modelling opportunities for slug 
impact phenomena. In previous versions of SEURBNUK-EURDYN the derivation 
of pressure from the equations of motion is abandoned for cells containing free sur- 
faces and replaced by a simple first-order interpolation based on stress continuity at 
the interface. Other codes from the ICE family, SOLA-VOF [21], PELE-IC [22], 
adopt the same procedure, while ICECO [23] and ALICE-II [24] have retained 
the original MAC zero-order interpolation. For impact simulations such techniques 
will generally produce unrealistic pressure profiles of the type shown in Fig. 18d, 
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FIG. 18. An Eulerian description of oblique slug impact: (a) prior to impact; (b) during impact; 
(c) partial impact cell; (d) impact pressure history. 

since there will be discontinuous change in the way the pressure field is computed 
as free-surface cells change status. 

The present approach, in which consistent use of the ICE algorithm is main- 
tained for all cell types, offers better modelling capabilities in this regard. A glance 
back at Fig. 18b shows that a suitable treatment is required for the partial impact 
cell 2, one which is consistent with those already developed for internal fluid cells 
(type 4), fluid-gas cells (type 3) and structure boundary cells (type 1). The treat- 
ment should be a natural extension of the ICE algorithm and must blend smoothly 
with existing formulations in the limiting cases Vl, I’2 + 0. 

5.2. Partial Impact Cell Treatment 

The simplest impact configuration is one in which the impact target, the reactor 
cover in LMFBR containment analysis, is immovable and chosen to lie along a cell 
edge boundary, Fig. 19a. If we take the upper face momentum (PU)~ to be represen- 
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and each of the terms on the RHS must represent actual mass fluxes across 
respective cell faces. In particular, the last term is the mass flux across the upper cell 
surface, and should be replaced by 

to allow for the reduced outflow resulting from the impact. Dividing by 
V= Vl + V2 and remembering that A, = ~/LIZ* from (lo), we then find 

This is the mass equation for the partial impact cell. In the limit 1/l + 0 the cell 
configuration approaches non-impact status and we recover the appropriate mass 
equation for a free surface boundary cell, (28). For the limit V2 + 0 the cell is fully 
impacted, ? = rG, and (51) expresses mass balance for an internal fluid cell, that is, 
Eq. (9) with uq = 0. Intermediate values reflect the gradual pressurisation as the 
impacted volume Vl expands through the cell. 

As pointed out earlier, the grid momentum (~0)~ in (51) represents the free sur- 
face motion within the partial impact cell, not the average mass flux, across the 
upper face, which would decrease as the impact region grows through the cell. This 
has some consequences in the determination of the source term 5: in the horizontal 
momentum equation for (PU)~, Eqs. (1 l), (13), where extra care is needed. 
Otherwise, as is now familiar, the cell can be considered full of fluid with, in par- 
ticular, the upper face momentum (PU)~ evaluated using (35), (36), as for a non- 
impact free surface cell. The other momenta are derived according to the standard 
momentum equations (1 l), (12). Substitution leads to an implicit equation for the 
cell pressure of type (16) with modified coefficients. The ICE algorithm is then 
extended to partial impact cells of the type given in Fig. 19. 

A suitable application of these ideas is the analysis of MARA-04, a 1/30th scale 
containment test performed at CEA/DRNR Cadarache in support of the safety 
requirements for the Super Phenix fast breeder reactor, [34]. A schematic of the 
experimental rig is shown in Fig. 20a. A strong roof plate (considered rigid and 
fixed) supports a thin cylindrical tank (radius 35 cm) with a torospherical base. 
Water fills the vessel to a depth of 43 mm below the roof level. A spherical low den- 
sity explosive charge is placed at approximately mid-height level along the centre 
line of the tank and is surrounded by simplified structures representing important 
internal components of the reactor. In particular, a diagrid plate, core support 
annulus, and internal tank are represented, the geometry tending to channel the 
fluid flow upwards towards the roof following detonation of the charge. This 
produces a domed slug impact on the roof cover plate in which water hits first on 
the axis of summetry and then spreads radially outwards. 

A SEURBNUK-EURDYN numerical simulation of the test has been carried out 
as part of a code comparison exercise reported in [35]. Figure 20b displays the 
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FIG. 20. Oblique impact (rigid roof): MARA- simulation: (a) experimental layout; (b) calculation 
T= 0.0 ms; (c) calculation T= 1.5 ms; (d) calculation T= 2.0 ms. 

starting point of the SEIJRBNUK-EURDYN calculation. After detonation of the 
charge, the explosion gases expand out of the core region, distorting surrounding 
structures, and driving a domed slug of liquid up towards the roof, Fig. 20~. After 
slug impact the deflected liquid flow compresses the air above the fluid into the 
outer extremities of the vessel, Fig. 20d. In this last configuration the extremities of 
the fluid surface, and the contact with corresponding structure boundaries, may be 
recognised as these already considered in Figs. lSb, 18b. 

The progress of the impact zone across the roof is monitored at specific radial 
positions, these coinciding with pressure transducer locations for the experiment. 
Calculated roof pressure histories near the central and mid-radius locations are 
shown alongside measured data in Fig. 21. There were two notionally equivalent 
measurements at the mid-radius position, on different azimuths, and both records 
are given in the figure to give an indication of disparities caused by local effects. 
Calculated profiles are in good agreement with measured data, showing a definitive 
pulse shape as the impact wave passes. The extra activity occurring at 4 ms which 
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follows a quiescent phase in the loading history, is also predicted, though somewhat 
early, perhaps due to some shortcomings in the treatment of cavitation in the code. 
Final impulse levels also agree well with measured values, Fig. 21~. 

Figure 22 shows the more general case in which fluid obliquely impacts a 
movable target which, in general, would be expected to deform under the impact 
load. The pressure relief effect associated with ensuing structural movement couples 
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FIG. 21. MARA-04. A comparison of calculated and experimental results: (a) central pressures; 
(b) mid-radius pressures; (c) impulses. 
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the fluid and structure dynamics: the fluid-structure interaction effect. With 
reference to the figure, we assume Vl, V2 to be respective fluid volumes within the 
cell under the impacted and non-impacted surfaces. Maintaining the terminology 
used previously, two upper face momenta are defined: (pu),, representative of the 
free boundary movement, and (PO);, representative of the structure movement. 

FIG. 22. Partial impact cell (deformable roof): (a) partial impact ceil; (b) associated non-impact cell; 
(c) partial areas and volumes. 
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Proceeding as before, we assume in the first instance that the free surface extends 
also along the impacted section from C to A, suggested in Fig. 22b. The general 
mass equation (28) may then be applied in which the upper face momentum (pu)., 
is referenced. Multiplying by the total fluid volume V= Vl + V2, and, recalling the 
relations (lo), we find 

so that each of the terms on the RHS will represent fluxes across respective cell 
faces. As before, we subtract the contribution for face AC given in (27), 

and add a contribution representative of the structure motion for the face AC, 

(53) 

The partial areas/volumes, defined according to (24), (25), are indicated in 
Fig. 22~. In particular, it should be noted that z2 = Vl. 

Subtracting Q.,., and adding Q,, to Eq. (52) we obtain 

+ {A,(PU),- (&.J dr(PUk(&-J A,(P),] AZ (54) 

for the mass continuity equation for the partial impact cell. The expression clearly 
has the correct requirements in the limits Vl, V2 + 0. The upper grid momentum 

CPU)49 which represents the free surface motion is evaluated as described in Sec- 
tion 4.1 for free surface boundary cells, while (pu):, the notional grid momentum 
representative of the structure motion, is eliminated using (53). The remaining 
momenta are eliminated using the standard momentum equations, (ll), (12), so 
that ultimately an implicit equation for the pressure of type (16) is derived. This 
completes the extension of the ICE algorithm to partial impact cells. 

The formulae derived in this section have been implemented into the version 
of the SEURBNUK-EURDYN code referenced earlier. A suitable application, 
MARA- [36], is taken from the same series of French LMFBR containment 
experiments as the previously described MARA- test, but now internal reactor 
details are excluded and the strong roof cover is replaced by a thin deformable 
plate. Figure 23 gives details of the test geometry. 

Two snaphots from the SEURBNUK-EURDYN calculation for MARA- are 
displayed. The first shows the configuration just prior to water impact on the roof 
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FIG. 23. Oblique impact (deforming roof): MARA- simulation: (a) experimental layout; 

(b) calculation T= 1.5 ms; (c) calculation T= 2.0 ms. 

plate. The charge gases have expanded out into the fluid producing deformations in 
the lower half of the vessel. The water surface, less domed than in MARA-04, 
nevertheless produces an oblique impact event of the type discussed in this section. 
Following impact further vessel deformations occur, the air blanket is compressed 
into a thin annular ring, and the roof plate bends under the impact load. In fact, 
two loading events occur: the first at about t = 2.0 ms corresponds to the first water 
contact with the roof plate which, yielding plastically under the load, moves away 
fast enough to cavitate the water beneath by t = 3.0 ms. The net momentum transfer 
before cavitation is not sufficient to arrest the upward motion of the water slug and, 
as the roof plate decelerates, the cavitated water recompacts and a second pressure 
loading occurs, commencing at about t = 4.0 ms. The double impact event, already 
predicted from simple analytical arguments, [37], occurs as a direct consequence of 
the fluid-structure interactions during the period of roof loading. 

Calculated roof pressure histories at two radial locations are shown alongside 
measured values in Fig. 24. Again, two records are included for comparison where 
possible. The code predictions are in very good agreement with the measured data 
and show clearly the double loading event. The pulse shapes are very distinctive 
and compare well with the experimental records. The subsequent recompression 
following cavitation is early, though final impulse levels are well predicted. 
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FIG. 24. MARA-08: A comparison of calculated and experimental results: (a) central pressures and 
impulses; (b) mid-radius pressures and impulses. 

6. FINAL REMARKS 

The implicit continuous Eulerian (ICE) finite difference method has been exten- 
ded to take account of boundary effects at free and moving structure surfaces. The 
pressure continuity condition at a free boundary and the free slip condition at a 
structure boundary are incorporated directly into the (discretised) conservation 
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equations enabling the pressure field to be determined throughout the fluid domain 
by consistent use of an implicit Poisson type equation. 

The approach simplifies considerably the complex topological programming 
traditionally associated with Eulerian codes, especially in situations in which free 
and structure boundaries are joined, or in close proximity. In particular, the ideas 
lead to a concise formulation for oblique impact phenomena, which preserves the 
physical continuity of the impact process. No artificial smoothing parameters or 
mesh regularisation procedures are necessary to obtain realistic pressure profiles. 
The method fully includes fluid-structure interaction effects. 

Formulae derived in the paper have been implemented into a version of the 
SEURBNUK-EURDYN code and sample problems, chosen to illustrate specific 
features of the formulation, are presented and the results are compared to exact 
values or measured data as appropriate. 
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